RooFit

Wouter VERKERKE
Nikhef, Amsterdam

1.1 Introduction and Overview

One of the central challenges in performing a physics analysis is to accurately model the distributions
of observable quantities Z in terms of the physical parameters of interest p as well as other parameters
¢ needed to describe detector effects such as resolution and efficiency. The resulting model consists of a
“probability density function” (PDF)

F(Z;p,q)
that is normalized over the allowed range of the observables ¥ with respect to the parameters p" and
G- Experience in the BaBar experiment has demonstrated that the development of a suitable model,
together with the tools needed to exploit it, is a frequent bottleneck of a physics analysis. For example,
some analyses initially used binned fits to small samples to avoid the cost of developing an unbinned fit
from scratch.

To address this problem, a general-purpose toolkit for physics analysis modeling was started in 1999.
This project fills a gap in the particle physicists’ tool kit that had not previously been addressed. The
RooFit toolkit is integrated and distributed with the ROOT[1] analysis environment. Detailed documen-

tation on the RooFit package can be found in the Users Manual[2] and various tutorials macros linked
from the RooFit web home [3].

1.2 Object-oriented data modeling

To keep the distance between a physicists’ mathematical description of a data model and its implemen-
tation as small as possible, the RooFit interface is styled after the language of mathematics. The object-
oriented ROOT environment is ideally suited for this approach : each mathematical object is represented
by a C+-+ software object. Table [1.1] illustrates the correspondence between some basic mathematical
concepts and RooFit classes.

Concept Math Symbol RooFit class name

Variable T,p RooRealVar

Function f(@) RooAbsReal
PDF F(z;p,q) RooAbsPdf
Space point z RooArgSet

Integral ;TZ‘;I f(@)dz RooRealIntegal
Derivative dF/dx RooDerivative

-log(Likelihood) —3° ., 108(F(x;,p) RooNLLVar

List of space points Tk RooAbsData

TaB. 1.1 — Correspondence between mathematical concepts and RooFit classes.

For example, a Gaussian probability density function with its variables is created as follows :

9



10 Les analyses discriminantes Multivariées

RooWorkspace w("w") ;
w.factory("Gaussian: :g(x[-10,10] ,mean[0] ,sigmal[3]1)") ;

The token Gaussian::g(x[-10,10] ,mean[0],sigmal[3]) is not interpreted as a mathematical expression
itself, but as an expression to construct a series of objects that together represent a Gaussian probability
density function and its parameters and observables. This distinction is important, as the 'constructor’
approach allows to access and modify all created objects in the workspace at a later time for tuning and
tailoring. It also allows construct more elaborate expression built on previously created objects in the
workspace.

In terms of object created, the example expression above is equivalent to constructing the following
objects ’by hand’ :

RooRealVar x("x","x",-10,10) ;
RooRealVar m("m","mean",0) ;

RooRealVar s("s","sigma",3) ;
RooGaussian g("g","gauss(x,m,s)",x,m,s) ;

Each object, either created by hand or by the factory, has a name, and a title. The name serves as unique
identifier of each object, the title can hold a more elaborate description of each object and only serves
documentation purposes. All objects can be inspected with the universally implemented Print () method,
which supports several verbosity levels.

In its default terse mode, output is limited to one line, in ’tree’ mode, one line is printed per component
object.

ROOT> g.Print() ;
RooGaussian::g[ x=x mean=m sigma=s ] =1

ROOT> x.Print() ;
RooRealVar::x = 0 L(-10 - 10)

ROOT> g.Print("t") ;

0xbb4870 RooGaussian::g = 1 [Auto]
0xba23c0/V- RooRealVar::x = 0
0xbab620/V- RooRealVar::m = 0
0xbabff0/V- RooRealVar::s = 3

Object that represent variables, such as RooRealVar in the example above, store in addition to the value
of that variable a series of associated properties, such as the allowed range, a binning specification and
their role in fits (constant vs. floating), which serve as default values in many situations. Objects created
by the factory can be inspected, and if necessary modified, in the same way by prefixing the name of the
object with w::.

ROOT> w::m=-2 ;
ROOT> w::g.Print("t")

Function objects are linked to their ingredients : the function object g always reflects the values of its
input variables x,m and s. The absence of any explicit invocation of calculation methods allows for true
symbolic manipulation in mathematical style.

1.3 Creating basic probability density functions

We will now explore the basics of the workspace for maintaining analysis projects, describe what basic
p-d.f shapes are available, how new ones can be created and how existing ones can be tailored.



[Wouter VERKERKE 1

1.3.1 Workspace basics

A workspace is a container class that is intended to contain all data modeling components of an analysis
project : data, (probability density) functions, parameters and observables. An empty workspace is created
as follows

RooWorkspace w("w",kTRUE) ;

If the second argument of the constructor is kTRUE, the workspace will also create a C+-+ namespace in the
CINT interpreter with the same name as the workspace, and populate that namespace with references to
the contents of the workspace. This feature allows to access all workspace contents through the namespace
in a type-safe way. There are two ways to populate a workspace with contents. The first one is the import ()
method, which imports a copy of an existing RooFit object, and all its subsidiaries into the workspace.
The other way is to use the factory to create objects directly in the workspace :

w.factory("Gaussian: :g(x[-10,10] ,mean[0] ,sigma[3])") ;

The syntax rules for factory construction of basic p.d.f.s and variables are as follows

name refers to an existing object with that name in the workspace

name|value | creates an initially constant RooRealVar

name[min,max | creates a RooRealVar with allowed values in the range [min,max].
name[val,min,max | is similar with an explicitly provided initial value

classname : :objname(var,var,...) creates an object of class classname with instance name objname
with the given arguments. The Roo prefix on the class name may be dropped for brevity. The order
and interpretation of the provided arguments is defined by the 3rd through n-th constructor argu-
ments of the class. An automatic name and title are inserted as 1st and 2nd constructor arguments.

classname(var,var,...) creates an object of class classname with automatically chosen instance name.
This is mostly useful for shorthand construction of intermediate functions objects in complex ex-
pression.

{a,b,c} refers to a RooArgSet or RooArgList of given arguments (dependent on context)

The syntax elements defined above can be used recursively, e.g. a variable can be defined in the place
where it is expected as input argument for the definition of a p.d.f. (as was already done the Gaussian
example above). The examples below illustrate some other uses of the factory syntax.

// Create second Gaussian using previously created x and mean variables
w.factory("Gaussian: :g2(x,mean,sigma2[5])") ;

// Create a Chebychev polynomial (requires list argument)
w.factory("Chebychev::ch(x,{a0[-1,1],a1[-1,1],a2[-1,11)") ;
1.3.2 Standard and generic functions

The RooFit distribution comes with a collection of standard p.d.f. shapes. The most frequently used ones
include

RooGaussian(x,mean,sigma) - Gaussian p.d.f.

RooExponential (x,alpha) - Exponential decay p.d.f.

— RooPolynomial (x,{a0,al,a2...}) - Polynomial p.d.f.

— RooChebychev(x,{t0,t1,t2,...}) - Chebychev polynomial p.d.f.

— RooBreitWigner (x,mean,width) - Non-relativistic Breit-Wigner p.d.f.
— RooLandau(x,mean,width) - Landau p.d.f.

RooCBShape (x,x0,sigma,alpha,n) - Crystal ball p.d.f.



12 Les analyses discriminantes Multivariées

— RooPoisson(x,mu) - Poisson p.d.f.

— RooArgusBG - Argus phase space p.d.f.

— RooHistPdf - Histogram-based shape p.d.f. (with optional interpolation)
— RooKeysPdf - Kernel estimation p.d.f.

All of these p.d.f. can be adjusted in terms of reparameterized input arguments, as well as through
addition, multiplication and convolution as will be shown in the next sections. It is also possible to define
a new p.d.f. class on the fly from a formula expression that is explicitly normalized through (numeric)
integration. The factory provides two interfaces : EXPR and CEXPR.

w.factory( "EXPR::mypdf (’exp(x*y+a)-b*x’,x[0,10],y[0,10],a[3],b[51)") ;
w.factory("CEXPR: :mypdf2(’exp(x*y+a)-b*x’,x[0,10],y[0,10],a[3],b[51)") ;

The difference is that the EXPR interface creates an interpreted RooGenericPdf that is based on a ROOT
TFormula interpreter engine, while the CEXPR interface create a custom RooFit p.d.f class that is compiled,
linked and instantiated on the spot. The trade off is a difference in initialization versus execution speed :
interpreted p.d.f. are created nearly instantly, but are slower in evaluation, whereas custom compiled p.d.f.
need a few seconds to instantiate, but are as fast as built-in p.d.f. in evaluation.

Along similar lines, generic functions can be defined with the expr and cexpr interfaces. Such functions
are most useful to define on-the-fly transformations of p.d.f. parameters and observables.

w.factory("expr: :mean(’aO*y+al’,y[-10,10],a0[1.03],a1[2.7,0,10]1)") ;
w.factory("Gaussian: :g(x[-10,10] ,mean,s[3])") ;

Here we have defined a two-dimensional p.d.f. G(z, u = (ag-y+aq), o) by tailoring the built-in RooGaussian
p-d.f. class. Such customization operations are generically possible on all RooFit p.d.f. classes, including
user-defined classes, and do not require explicit handling of such scenarios in the p.d.f. class itself. You
can equivalently write the same p.d.f. in a single line of factory code as follows

w.factory("Gaussian: :g(x[-10,10] ,expr(’a0*y+al’,y[-10,10],a0[1.03],a1[2.7,0,10]),s[31)") ;

1.4 Fitting, Plotting and Toy Generation from p.d.f.s

Once a p.d.f. is created (in a workspace or outside) we can use it for fitting, plotting and toy event
generation. To plot a p.d.f, first a plot frame must be created that represents a view of a given observable.
To plot a Gaussian p.d.f. versus the observable x, one does

// Make Gaussian p.d.f.
w.factory("Gaussian::g("x[-10,10],m[-10,10],s[3,0.1,101)") ;

// Make plot frame in x
RooPlot* frame = w::x.frame() ;

// Plot p.d.f. g on x
w::g.plotOn(frame) ;

// Draw frame on canvas
frame->Draw() ;

The resulting plot is shown in Figure To fit this p.d.f. to data, the data needs to be first available in
the form of a RooFit binned or unbinned dataset. Unbinned data can be imported from a ROOT TTree
as follows

RooDataSet data("data","my data",w::x,myTree) ;



[Wouter VERKERKE 13

where myTree is a ROOT TTree with a branch named x. Binned data can be imported from a ROOT TH1
as follows

RooDataHist data("data","my data",w::x,myHist) ;

Both data types inherit from a common abstract data type RooAbsData, that is accepted by RooAbsPdf: :
fitTo(). An (un)binned maximum likelihood fit of the p.d.f. g to data (of either type) is then performed
as

w::g.fitTo(data) ;

The effect of the £itTo() operation is that the parameter objects of g have their values changed to the
fitted values and that errors are associated with these values :

w::m.Print() ;
RooRealVar::m = 0.08544 +/- 0.0987391 L(-10 - 10)

w::8.Print() ;
RooRealVar::s = 3.10016 +/- 0.0723132 L(0.1 - 10)

A subsequent plot of the p.d.f. will reflect these new values

RooPlot* frame = w::x.frame() ;
data.plotOn(frame) ;
w::g.plotOn(frame) ;

// Add text box to frame with parameter values
w::g.paramOn(frame,data) ;

frame->Draw() ;

The resulting plot is shown in Figure [1.2. Optionally, the £itTo() method can return a RooFitResult
object which provides additional information on the fit, such as the covariance and correlation matrix
between the parameters, the MINUIT status code, the covariance matrix quality code, the estimated
distance to the minimum etc. To request that information, add the Save () option to fitTo ()

ROOT> RooFitResult* r = w::g.fitTo(data,Save()) ;
ROOT> r->Print() ;

RooFitResult: minimized FCN value: 2542.02, estimated distance to minimum: 4.12535e-07
covariance matrix quality: Full, accurate covariance matrix

m 8.5440e-02 +/- 9.87e-02
s 3.1002e+00 +/- 7.23e-02

ROOT> r->correlationMatrix().Print() ;
2x2 matrix is as follows

0 | 1 0.002938
1] 0.002938 1



14 Les analyses discriminantes Multivariées

With help of this additional information on the correlations between the parameters it is also possible to
visualize the uncertainty on the p.d.f. shape in the plot

// Plot p.d.f. g on x
w::g.plotOn(frame,VisualizeError(*r)) ;

The resulting plot is shown in Figure 1.3, where a smaller data sample was used to enlarge the error for
illustration clarity.

|_ARooPlot of "x" |

jectionmf g
o
N
a1

£0.02—
0.015— FiGc. 1.1 — A Unit nor-
B malized Gaussian p.d.f
0_01:_ projected on a RooPlot

0.005—

0 v by by b by by by s by
-10 -8 -6 -4 -2 0 2 4 6 8 10
X

A RooPlot of "x" ]

. m = 0.085 + 0.099
N 40 s = 3.100 + 0.072
> 35
<
[}
o 30 _
Fic. 1.2 — Gaussian
25 I p.d.f. projected over a
20 { dataset. The normaliza-
~ tion is adjusted to the
15 ) l event count of the data-
10 i set
5
o) LLLLIEEH | o o v v by v vy v by !

-10 -8 -6 -4 -2 0 2 4 6 8 10

1.5 Adding shapes into composite models

Most realistic data description models are sum of multiple components, e.g. signal and background.
Mathematically the sum of two probability density functions is also a normalized probability density
function as along as the coefficients add up to 1, e.g.

S(x) = f-Fz) + (1 - f)-G(=),



[Wouter VERKERKE 15

[ A RooPlot of "x" |

o L
S 20
2
S L
L 15
i Fia. 1.3 — Visualiza-
C tion of p.d.f. uncertainty
10— propagated from the co-
- variance matrix of a fit
B to the data
T <l.
0_l..'. O TS T T T T T T e e
-10 -8 -6 -4 -2 0 2 4 6 8 10
X
or generically for N components :
n—1
S(x)=co- Fo(x)+c1- Fi(x)+ ...+ cpe1 - Froa(z) + (1 — Zcz> F,.(z) (1.1)
i=0

In RooFit such summed p.d.f.s are represented by class RooAddPdf, which are created by the factory
operator SUM()

// Build two Gaussian p.d.f.s. and an ARGUS shape
w->factory("Gaussian: :gauss1(x[0,10] ,mean1[2],sigmal[1])") ;
w->factory("Gaussian: :gauss2(x,mean2[3],sigmal)") ;
w->factory("ArgusBG: :argus(x,x0[9.0] ,kappal-1]1") ;

// Now add them together using the SUM operator
w->factory("SUM: :model(glfrac[0.5]*gaussl, g2frac[0.1]*gauss2, argus") ;

The components of such summed p.d.f.s can be addressed individually in plotting, e.g.

RooPlot* frame = w::x.frame() ;
w::model.plotOn(frame) ;

// Plot argus component only
w::model.plotOn(frame,Components(w: :argus),LineStyle(kDashed)) ;

Components in plotting can be specified with an component object reference, as done above, a
RooArgSet () of component references to specify multiple components, or with a string with the com-
ponent name or names (separated by commas). Figure [1.4/ shows the plot that results from the above
example.

1.5.1 Recursive fractions

If a composite p.d.f. consists of more than two components, there is no simple way in the formalism of Eq.
to constrain the fraction parameters such that the sum of the fractions is always less than one. If the
sum of these coefficients becomes larger than one, the remainder coefficient will be assigned a negative
fraction. As long as the summed p.d.f. is greater than zero everywhere, this is not ill-defined, but may
pose some problems in the interpretation. An alternative is to write the sum of p.d.f.s recursively :



16 Les analyses discriminantes Multivariées

[ A RooPlot of "x" |

§.025—

g [

S T

50.021—

3] N

m —

S f

®.015— Fi1G. 1.4 — Visualization
B of components of a com-

0.01— posite p.d.f.
0.005-

e
e
-e”
.t
"
Pr

----

Sa(z) = f-Fi(x)+ (1 - f) Fa()
S3(z) = fi-Fi(x)+ A= f1) (fe- Fa(z) + (1 = f2) - F3(2))
Sa(z) = fi-Fi(@)+ Q= f1) (fo- Fa(z) + (1= f2) - (fs - F3(z) + (1 — f3) - Fu(z)))

Recursive sum definitions like these can be constructed with the factory operator RSUM()
w->factory("RSUM: :model(gifrac*gaussl, g2frac*gauss2, argus") ;

The difference between this p.d.f and the equivalent one with SUM() is that here g2frac now represents
the relative fraction of gauss2 w.r.t. gauss2+argus, rather than the absolute fraction of gauss2 w.r.t.
gauss+gauss2+argus.

1.5.2 Extended maximum likelihood and summed p.d.f.s

Composite p.d.f.s are often used in conjunction with the extended maximum likelihood formalism. In the
extended likelihood formalism, a term

— log(Poisson(Nops, Nexp))

is added to the regular likelihood that allows to estimate a parameter that represents the number of events
in the sample, Nc,,. For composite models it is practical to rearrange the parameters as

< fsig > - ( Nsig :fsig'Nex )
Ne:vp kag = (1 - fsz'g) : Nemp '

so that the extended ML procedure estimates the number of signal and background events rather than a
signal fraction and a total number of events. Composite models of this form can be constructed with the
SUM() operator by multiplying the last p.d.f. with a coefficient term

w->factory("SUM: :model (NG1[0,1000] *gaussl, NG2[0,1000]*gauss2, NG3[0,1000]*argus") ;

A fitTo() operation on a sum p.d.f. with equal number of p.d.f.s and coefficients will automatically
included the extended term in the likelihood.



[Wouter VERKERKE 7

1.6 Convolution

Data models that describe physics distributions smeared by an experimental (detector) resolution can
be modeled with convolution of a p.d.f. describing the physics and a p.d.f. describing the experimental
resolution.

M(z,p,q) = T(x,p) @ R(x,q)

If the two p.d.f.s are sufficiently different in shape, it may be possible to extract both the physics parame-
ters of interest as well as the parameters of the smearing model from the data. Most practical difficulties
arise in the calculation of the convolution integral

M(z,5,d) = / T(z.5) Rz — o', )ds’

which is analytically calculable only for selected combinations of R an 7. In addition, for a properly
normalized p.d.f on a finite domain of x, the function M needs to be explicitly divided by a normalization
integral

/ / T(z,p) - R(x — 2',§)dx'dx

1.6.1 Comparison of convolution calculation strategies

RooFit provides three strategies for the convolution of p.d.f.s, each with their own set of advantages and
disadvantages.

— Analytical formulation for selected p.d.f.s (mostly related to B-physics),
— Numeric convolution using Fourier Transforms
— Brute-force calculation of convolution integral

Analytical formulation’s big advantages are speed and precision, but are only available for select choices
of T and R. Numeric convolution using Fourier Transforms is also quite fast, works for all choices of T’
and R, but requires sampling of both p.d.f.s at a finite resolution and may present some special com-
plications for choices of R and 7' that do not vanish at the observable domain boundaries. Brute force
calculation finally is generally very slow, especially at the required precision for MINUIT minimization,
but can calculate convolutions for all R and T

| landau (x) gauss convolution |

< =
; 700
§ 600F Fig. 1.5 - P.df. of a
w soof- convolution of a Lan-
c dau with a Gaussian fit-
400 ted to data and over-
3005_ laid on that data(solid).
- The dashed line shows
200f— the unconvoluted Lan-
1005_ dau shape.

Kr=)
o
&




18 Les analyses discriminantes Multivariées

1.6.2 Numeric convolution

Both the FFT-based and brute-force numeric convolution calculators are implemented in the general Roo-
Fit operator p.d.f. form and can be easily instantiated through the workspace factory with the operators
FCONV and NCONV respectively :

// Make T(x) and R(x)
w.factory("Landau: :T("x[-10,30] ,m_t[5,-20,20],s_t[1,0.1,101)") ;
w.factory("Gaussian::R("x,m_r[0],s_r[2,0.1,101)") ;

// Request fine binning for FFT sampling
w::x.8etBins (10000,"cache") ;

// Make FFT convolution M(x) = T(x) (%) R(x)
w.factory("FCONV: :M(x,T,R)") ;

// Make brute-force numeric convolution M(x) = T(x) (%) R(x)
w.factory("NCONV: :N(x,T,R)") ;

Figure [1.5] shows the above p.d.f. M fitted to a dataset of 10000 events, along with the unconvoluted
p.d.f. T (dashed). This fit with three floating parameters required 84 evaluations of the likelihood, took 8
seconds, and demonstrates the power of the FFT algorithm : each likelihood evaluation with 10000 events
was executed in roughly 100 milliseconds. By comparison, a single evaluation the likelihood constructed
with NCONV takes roughly 7 seconds, about two order of magnitude slower that the FFT algorithm.

Special issues with Fourier convolution

While the computational performance of FFT-based convolution is superior to brute-force numeric cal-
culation, it makes some approximations that are acceptable in many, but not all use cases.

Finite sampling resolution and range. Since discrete Fourier transforms are used, both 7" and R are sampled
at a finite resolution over a finite range. Care should be taken that the sampling resolution is sufficiently
high (through w::x.setBins() as shown above), and that the range is sufficiently wide. The default
strategy of RooFFTConvPdf is to sample the physics model T over the defined range of the observable and
the resolution model R over symmetric range around zero with the same width as the range for 7. If
the resolution model does not fit in this range, the convolution is effectively calculated with a truncated
resolution function.

Circular effects from convolution theorem The convolution theorem, used to calculate the convolution in
Fourier space, treats both T and R as cyclical in the convolution observable. Such cyclical effects will
be apparent in the final convolution M if the input p.d.f. T" does not decrease to zero at the observable
boundaries. To decrease the effect of this spillover on output p.d.f. it is possible to perform the convolution
in a range wider than the nominal observable range and then truncate the convoluted p.d.f to the nominal
range, cutting away the regions most effected by the spillover. The size of this spillover buffer is 10% of the
observable range by default, but can be controlled through the RooFFTConvPdf: :setBufferFraction()
method. Figure 1.6 demonstrates the effect on modified version of the Landau ® Gaussian example with
a buffer fraction of zero (dotted), 10% (dashed) and 50% (solid). For inherently circular observables like
angles, circular convolution is in fact the appropriate solution, and for such observables the buffer fraction
should be set to zero.

1.6.3 Analytical convolution

For selected p.d.f.s RooFit provides an interface to analytically calculated integrals. These p.d.f. must be
of the form

P(z,..) => o) (fulx,..) ® R, ...))

k



[Wouter VERKERKE 19

| landau (x) gauss convolution |

0 -
(2} -
2 -
S 003
£ r
80025 FIG. 1.6 — Cyclical spill-
= -
= C over effects of Fourier
5 0.02— .
p C convolutions when un-
h=l C .
5 0.015[ treated. (dotted), with a
= - 10% spillover buffer (da-
& 001 shed) and a 50% spillo-
- ver buffer(solid)
0.005F=
0:*.~.”'2~.|....|....|.. N B R B
-10 -5 0 5 10 15 20 25 30

t

For example, a B? meson decay with B/B° mixing from an Y (4s) decay at a B-factory can be written
in this form with

co=1+Aw fo=e It/

1 =+(1—2w) f1=e M7 cos(Am -t)

Such p.d.f.s are implemented in two parts : a physics class inheriting from base class RooAbsAnaConvPdf
that implement coefficients ¢, and declare the associated basis functions f, and a resolution model
inheriting from RooResolutionModel that implement fi(z,...) ® R(z,...). This separation allows the
combinations of physics and resolution to be chosen at run time. Since these RooAbsAnaConvPdf derived
objects are not functional without a resolution model, an operator form like FCONV to construct such
convolutions is not appropriate. Instead the resolution model must be specified in the constructor.

The example below illustrates the procedure for class RooDecay, which implements a plain decay
function, with a variety of resolution models

// Convolution of Decay with delta function
w.factory("Decay: :decay_tm(t [-20,20] ,taul1.548] ,TruthModel (t) ,DoubleSided)") ;

// Convolution of Decay with Gaussian resolution
w.factory("Decay: :decay_gml(t,tau,GaussModel: :gml(t,bias[0] ,resoll1[1]),DoubleSided)") ;

// Convolution of Decay with double-Gaussian resolution
w.factory("Decay: :decay_gm2(t,tau,
AddModel ({gm1,GaussModel: :gm2(t,bias,resol2[5])},frac[0.5]) ,DoubleSided)") ;

RooPlot* frame = w::t.frame(-10,10) ;
w::decay_tm.plotOn(frame) ;
w::decay_gml.plotOn(frame,LineStyle (kDashed)) ;
w::decay_gm2.plotOn(frame,LineStyle(kDotted)) ;
frame->Draw()

Figure (1.7 shows the about of this example.

1.7 Building Multi-Dimensional Model

While many data analysis and modeling problems involve more than one observable, multi-dimensional
models are less frequently used because of difficulties in formulating such models. In RooFit, the construc-
tion of multi-dimensional models is straightforward and several strategies are discussed to construct these.



20 Les analyses discriminantes Multivariées

[ A RooPlot of "t" |

g L
| u
& 0.06
S Ok
g u
5 0.05 Fic. 1.7 - Analy-
S - tical  convolution  of
3 0.04 decay function with
g - delta-function  (solid),
0.031~ Gaussian (dashed) and
- double Gaussian reso-
0.021~ lution model (dotted)
0.01—
0':"' A b e ST
-10 -8 -6 -4 -2 0 2 4 6 8 10

1.7.1 Constructing N-dimensional models without correlations

The simplest way to construct a multi-dimensional model is to multiply two or more one-dimensional
p-d.f.s. Mathematically this is straightforward :

H(z,y) = F(z) - G(y) H(T) = HFz(wz)

It is easy to see that if F'(z) and G(z) are normalized p.d.f.s, that H(z,y) is also normalized by construc-
tion. This is important as the normalization of a N-dimensional p.d.f, which is generally a difficult problem,
is here reduced to a series of lower dimensional integrals.

The RooFit class to implement these other products (discussed later) is RooProdPdf, and is created
with the factory operator PROD ()

w.factory("Gaussian::gx(x[-10,10] ,mx[-2,-10,10],sx[3,0.1,101)") ;
w.factory("Gaussian::gy(y[-10,10] ,my[4,-10,10],sy[1,0.1,10])") ;

w.factory("PROD: :gxy(gx,gy)") ;

1.7.2 Using N-dimensional models

Using multi-dimensional models in RooFit is not really different from using one-dimensional models, as
is illustrated by an example below that generates toy data from the above 2-dimensional Gaussian, fits
the p.d.f. to that data

// Generate a toy dataset D(x,y)
RooDataSet* data = w::gxy.generate(RooArgSet(w::x,w::y),10000) ;

// Fit p.d.f G(x,y) to D(x,y)
w::gxy.fitTo(*data) ;

Most of the differences are in plotting as a two-dimensional models can be visualized in multiple ways.
Below we create two one-dimensional plots with projections on the x and y axis overlaid on data, as well
as a two-dimensional plot of the p.d.f.

// Plot projections of p.d.f. and data on x and y
RooPlot* framex = w::x.frame() ;
data->plotOn(framex) ; w::gxy->plotOn(framex) ;



[Wouter VERKERKE

RooPlot* framey = w::y.frame() ;
data->plotOn(framey) ; w::gxy->plotOn(framey) ;

// Make 2D plot of p.d.f

TH2* hh_pdf = w::gxy.createHistogram("x,y") ;
hh_pdf->Draw("surf") ;

If a multi-dimensional dataset is added to a one-dimensional RooPlot frame, all observables of that
dataset are memorized and any p.d.f. that is subsequently plotted on that same frame will automatically
be integrated over those observables so that the projection of gxy on x that is shown is [ g,y (z,y)dy and
the projection of gxy on y is [ gy (x,y)dz. Figure 1.8 shows the output of this example.

The product p.d.f operator class RooProdPdf automatically recognizes the factorizing structure of

its product and and will analytically deduce that these integrals can be resolved to g,(z) and gy,(y)
respectively.

A RooPlot of "x" A RooPlot of "y"
200, o
= 00
P P
250, o0k
[ [
E >
Yoof
200
500F
150 200F
100 300F
200F
50
100

F1G. 1.8 - Visualization of 2-dimensional Gaussian p.d.f. G(z,y) = G(x) - G(y) : Projection on z= (left),
Projection on y(middle) and two-dimensional view(right)

1.7.3 Constructing N-dimensional models with correlations

The easiest way to introduce correlations in a multi-dimensional model is to start with a one-dimensional
model and replace one of the parameters with a function that depends on a second observable, e.g.

F(x;p) — F(z,p(y,q)) — F(z,y,q)

This approach maps to many practical problems. For example, the reconstruct mass m is modeled by
a Gaussian S(m,mg,o) for the signal component, but the mass peak turns out to have a slight bias
depending on the value on another observable 4. In that case the data model can be improved by accounting

for that y-dependent bias explicitly in the model S’ (z, mo(m{™“e, v, p), o).

In RooFit the transformation of one-dimensional models into multi-dimensional models with this
technique is performed exactly as formulated mathematically

w.factory("Gaussian: :g(x[-10,10],expr: :mx (’mO+my*y’ ,y[-10,10],m0[-0.5],m1[3]1),sx[3]1)") ;

The above p.d.f g, when used as a two-dimensional p.d.f. in z,y does however also make an explicit
prediction for the distribution of events in y. In the particular case of the above model g(z,y), it comes
out to a flat distribution in y, which can be seen by plotting the p.d.f. vs y as shown in Figure 1.9

If the distribution in y is unknown or irrelevant, as in the physics example above, and one cares only
bout the distribution in = given a value of y, the p.d.f should be used as conditional p.d.f. g(x|y) rather
than as two-dimensional p.d.f. g(x,y). The difference between these two forms is in the normalization

/g(x,y)dxdy =1 /g(m,y)daj = 1 for each value of y



22 Les analyses discriminantes Multivariées

A RooPlot of "x" A RooPlot of "y |
o F o
5 0.02:— 5 0.0
§ 0.018F §
8 o.016F 8
& o016 & 008
& 0.014F o

0.012F 0.006

0.0

0.008F 0.004~

0.006F

0.004F 0.002

0.002F

E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
M e 6 4 2 0z T e e T S R T
X y

F1G. 1.9 — Visualization of Gaussian p.d.f with a shifting mean G(z,y) = G(z, f(y), o) : Projection on x
(left), Projection on y(middle) and two-dimensional view(right)

The object gxy created above can be used in either way. To use it as conditional p.d.f. the observables
that are to be taken conditional must be specified

// Fit g(xly) to a dataset D(x,y)
gxy.fitTo(data,ConditionalObservables(y)) ;

Conditional p.d.f.s require some extra input in toy event generation and plotting as these operation require
knowledge of the distribution of the data in the conditional observable, which is (by construction) not
provided by a conditional p.d.f, thus these need to be supplied externally

// Generate dataset D(x,y) from g(x|y) and D(y)
RooDataSet* dataxy = w::gxy.generate(w::y,ProtoData(datay)) ;

// Project distribution of g(x|y) on x
RooPlot* framex = w::x.frame() ;
gxy.plotOn(framex,ProjectWData(w: :y,datay)) ;

For the latter projection, the usual integral [ g(z,y)dy is replaced by 1/Naata Y gata 9(, Yi)-
Aside from these practical issues of conditional p.d.f.s, there is also a more fundamental problem, as
pointed out by Punzi [4] : if you take the sum of two conditional p.d.f.s

f-S(ly) + (1= f)- B(zly)

your fit results may be incorrect if the true distribution of S and B differ in the conditional observable v,
as the model has no way of accounting for that. For this reason, and the aforementioned practical reasons,
it is usually better to multiply a conditional p.d.f. with another p.d.f. modeling the conditional observable

H(z,y) = G(z|y) - F'(y)

A conditional product of this form is normalized by construction, if G(z|y) and F(y) are. The ’conditional
product’ form is both easy to write and to easy use. Here we extend the original example with gzy to a
conditional product form

w::factory ("PROD: :gxy2(gxyl|y,Exponential: :fy(y,slope[-11))") ;
Figure shows the above conditional product p.d.f. in various projections.

1.7.4 Per-event errors, a physics example of conditional product p.d.f

A common application of conditional p.d.f.s in physics is the incorporation of 'per-event’ errors in a
data model. Often a measured observable, like the B meson decay time, consists of a value (a flight time



[Wouter VERKERKE 23

A RooPlot of "x" A RooPlot of "y" Histogram of g2 x
o 024F

=3 o (=]

®o3[ 0H22

c r =

S 8.02]

0B25F 0918
o

Pri
8
&

0.02F

0.005 0.004|

o
o
=3
[
T T T T
T T T T T T T

F1G. 1.10 — Visualization of 2-dimensional model H(z,y) = G(z|y)-F(y) : Projection on z (left), Projection
on y(middle) and two-dimensional view(right)

t) and an associated measurement error on that time (0t, as e.g. provided by the vertexing algorithm used
to construct the B meson decay point). The decay distribution of B mesons can to first order be described
with an exponential decay function convoluted with Gaussian resolution model

F(t)=D(t,7) ® R(t, u,0)

But in this form the difference in quality of the measurement of each event, is not taken into account.
Instead, one can rewrite F'(t) as

F(t|ot) = D(t,7) @ R(t, p, 6t - o)

in which case the experimental resolution of the model is adjusted to each event, based on the provided
per-event error. This enhanced model has potentially greater statistical sensitivity as the information
on the per-event error is also used. The parameter ¢’ of this modified model serves as an overall scale
correction to the per-event error in the data. If these error estimates are correct, the fitted value of o’
will be consistent with one. If ¢’ comes out larger than one, the per-event errors underestimated the true
error. Note that even when o’ is not consistent with one, this model can correctly describe the data, as
long as the true error is proportional by a constant scale factor to the provided per-event error.

Since F(t|0t) does in all likelihood not describe the distribution of §t in the data it must be used as a
conditional p.d.f, or as conditional p.d.f. multiplied with an second p.d.f. describing the distribution of the
per-event errors. If the event sample contains also background events, and if it cannot be assumed that
these background events have the same per-event error distribution as the signal events, a conditional
product form should be used to avoid biases due to differences in per-event error distributions

M(t,0t) = fsig - S1(t|0¢) - S2(6t) + (L = fsig) - B1(t]0¢) - B2(6t)

1.8 Data modeling with discrete observables

All data models described so far involved continuous (real-valued) observables and parameters. In this
section we explore a number of common analysis problems involving discrete observables

1.8.1 Fitting for efficiencies

A common analysis problem is the parameterization and fitting of efficiencies as function of one or more
observables. The simplest approach taken is to take an efficiency function f(x) and perform a x? fit to
a histogram H(x) with efficiency measurements calculated from the ratio of accepted to all events in
each bin. The errors on these bins are usually calculated from a symmetricised binomial error formula,
o(e) = y/e(1 —€))/n, or the equivalent (asymmetric) interval as obtained from e.g. a Feldman-Cousins
type method. In either case, such a fit suffers from approximations made in the error calculation and/or



24 Les analyses discriminantes Multivariées

approximations made in the y? formalism in general.

It is possible however, to perform a simple unbinned maximum likelihood fit for the efficiency that
does not suffer from these approximations, if one sees this as problem with two observables rather than
one : each event is described by a continuous observable x and a discrete observable ¢ with two possible
states accept and reject. The probability density function corresponding to the efficiency measurement is

E(c|lx,d) = 0(c = accept) - €(x, @) + §(c = reject) - (1 — e(x, d))

where €(z, @) is the efficiency function to be fitted. The model E(c|x) should be taken as conditional in
x as the model does not aim to describe the distribution of «x itself, but merely the distribution in ¢ for
each value of x. In RooFit the efficiency pdf should above is coded as follows

w.factory("expr: :epsilon(’(1-a)+axcos((x-c)/b)’,al0.4,0,1]1,b[5],c[-1,-10,101)") ;
w.factory("Efficiency: :E(epsilon,cut[accept,reject],’accept’)")

The factory token cut[accept,reject] creates a discrete RooFit variable of the type RooCategory that
has finite set of states labeled by a name and optionally an index (e.g. cut [accept=0,reject=1]). Given
a binned or unbinned dataset D(z,c), the efficiency e(x) is fit and visualized as follows

w::E.fitTo(data,ConditionalObservables(w::x)) ;

RooPlot* frame = w::x.frame() ;
data.plotOn(frame,Efficiency(w::c)) ;
epsilon.plotOn(frame) ;

Here the Efficiency(cut) argument passed to the plotOn() call for data modifies the default behavior :
instead of plotting the distribution in z it plots the efficiency of c¢=accept in bins of x. In the efficiency
mode, the error bars reflect 68% binomial confidence intervals instead of Poisson intervals. Figure [1.11
shows the output of this plot (on the right), as well as the x distribution of all (black) and accepted (red)
events (on the left).

Fic. 1.11 - Dataset
TH000 g 1 with encoded efficiency
P R4 8 . .

§ + it in discrete observable.

£ 800 RS d os C . .
S I Left : Distribution of

8% T 5 [ .

soof- 5. 8¢ g, $os all events in x (black)
* Iof and subset of accep-
0 %3 4 ted events (red). Right :
200 ::* oo Acceptance efficiency in
01l : data overlaid with fit-
R R R R R R N1 o e R R ) ted efficiency from mo-

X X

del E(c|x)

1.8.2 Joint fits

Discrete observables can also be used to label data from various sources into a unified dataset and to
allow joint fit fit to those samples.

Definition of joint likelihood

The general concept of a joint fit is easiest explained at the likelihood level. Given two models/data pairs

Fi(z;a,b),D1(x) and Fy(x,a,c), Da(z)



[Wouter VERKERKE 25

two likelihoods Lj(a,b) and Ls(a,c) can be constructed that can be used to estimate the parameters a,b
and a, c respectively. This approach results in two measurements of a to be combined a posteriori. Instead
one can perform a joint fit by minimizing the sum of the — log likelihoods.

—log(Li2(a,b,c)) = —log(Li(a,b)) + —log(La(a,c)) (1.2)

This joint estimate results in a more precise estimation of the common parameter a as well as a full and
correct error propagation between all three parameters.

Definition of joint p.d.f.

Such a joint fit can also be described at the p.d.f level by first constructing a joint dataset D(x, k) that
contains events from both Dj(z) and Dy(z) where a discrete observable k(1,2) labels the origin of each
event. A joint p.d.f Fia(z, k;a,b, c) is then construct as

Fis(x,k;a,b,¢) = d(k — 1)Fi(x;a,b) + §(k — 2)Fy(x, a,c),

which, when combined with the dataset D(x, k) results again in the likelihood of Eq. The advantage
of the formulation of a joint p.d.f. over a joint likelihood is that it remains possible to describe all modeling
problems at the p.d.f. level.

1.8.3 Application and construction of joint fits

Joint fits have two general classes of use. The first use case is a fit to dissimilar samples that measure
a common physics parameter a of interest. Examples of such fits are combined fits for the Higgs mass
from different Higgs decays channels (« is the Higgs mass), or joint a fit to signal and control/sideband
region in the data. In the latter case @ are usually properties of the background shape that are better
constrained in the control region than in the signal region, but needed in the signal region for a better
determination of the signal component.

Joint models of the first type, defined from two existing p.d.f.s are represented by class RooSimultaneous
and are created by the SIM() factory operator

// Make p.d.f.s F(x) for samples A,B
w.factory("Gaussian: :pdfA(x[-10,10] ,mean[-10,10] ,sigmaA[3,0.1,10]") ;
w.factory("BreitWigner: :pdfB(x,mean,sigmaB[3,0.1,10]") ;

// Make joint p.d.f. F(x,k)
w.factory("SIM: :model (k[sampleA,sampleB],sampleA=pdfA,sampleB=pdfB)") ;

A joint dataset D(x, k) to be used with w: :model can be created as follows

RooDataSet datal2("datal2","joint data",Index(w::k),
Import ("sampleA",datal) , Import ("sampleB",data2)) ;

The second use is a fit to similar samples that have slight variations in sample properties. Example
of such fits are the measurement of the CP violation parameter sin 25 in different bins of flavor tagging
purity, or measurement of e.g. a single-leptonic top cross section in different bins of b-tagging probability.
These samples have the same observables and can generally all be fit by the same shape, and their division
in subsamples of different purity serves solely to enhance the statistical precision of the measurement by
exploiting these differences in purity.

Joint fits of the second type can be made in the same way as joint fits of the first type, e.g.

// Make p.d.f.s for samples A,B,C,D,E,F

w.factory("Gaussian: :pdfA(x[-10,10] ,mean[-10,10] ,sigmaA[3,0.1,10]") ;
w.factory("Gaussian: :pdfB(x,mean,sigmaA[3,0.1,10]1") ;
w.factory("Gaussian: :pdfC(x,mean,sigmaB[3,0.1,10]") ;



26 Les analyses discriminantes Multivariées

w.factory("Gaussian: :pdfD(x,mean,sigmaC[3,0.1,10]") ;
w.factory("Gaussian: :pdfE(x,mean,sigmaD[3,0.1,10]") ;
w.factory("Gaussian: :pdfF(x,mean,sigmaE[3,0.1,10]") ;

// Make joint p.d.f.
w.factory("SIM: :model (k[sampleA,sampleB,sampleC,sampleD,sampleE,sampleF],"
"sampleA=pdfA,sampleB=pdfB, sampleC=pdfC,
sampleD=pdfD, sampleE=pdfE, sampleF=pdfF)") ;

but it is often impractical, resulting in repetitive code, as all p.d.f.s are similar in construction. It is
possible to request construction of such p.d.f. in a more compact form using the dedicated SIMCLONE ()
factory operator. The code fragment below produces the same simultaneous p.d.f. as the example above,
but is much shorter.

w.factory("Gaussian: :pdf (x[-10,10] ,mean[-10,10] ,sigma[3,0.1,10]1)") ;
w.factory("k[sampleA,sampleB,sampleC,sampleD]") ;
w.factory("SIMCLONE: :model (pdf,\$SplitParam(sigma,k)") ;

The SIMCLONE() operator takes a prototype pdf, pdf in this case and a customization prescription
SplitParam(sigma,k), which specifies that the p.d.f that is associated with each state of k must have its
own copy of parameter sigma, named sigma_A trough sigma_F (thus sigma is ’split’ over k). It is possible
to split any number of parameters in a category, use multiple splitting categories, and to split any given
variable by more than one category.

In case the subdivision of the data represent by the index k is not fundamental — i.e. it arises from
a binning of a continuous observable in the data such as a b-tagging probability, rather than choice of a
flavor tagging algorithm of which there exist a fixed and finite number — the process of defining the index
category k and may be further automated. Given a dataset with two observables D(z,y) we can create
an index category k that represents bins of y as follows

// Define binning in y
w::y.setBinning(20,"kbins") ;

// Create a real-to-category function kfunc(y) that maps the value of y to a ’kbin’ number
w.factory("BinningCategory: :kfunc(w: :y, ’kbins?’)")

// Add an observable ’k’ to dataset ’data’ with a value calculated by ’kfunc(y)’
w.factory("dataobs: :k(data,kfunc)") ;

1.9 Practical aspects of Maximum Likelihood estimation

So far, we have focused on the formulation and construction of probability density functions. This section
will focus on practical aspects and problems that may arise ML estimation of non-trivial models.

1.9.1 Creating a likelihood from a pdf and data

While pdf.fitTo(data) command performs all aspects of fitting automatically, it is sometimes useful to
perform the required steps by hand, for greater control over the minimization, or to be able to visualize
likelihoods in the process for analysis an debugging purposes. The standard execution of a fit operation
can be replaced by the following few lines of code, which construct the likelihood function, minimize the
likelihood function and perform the error analysis :

// Construct likelihood function L(p)
RooAbsReal* nll = pdf.createNLL(data) ;



[Wouter VERKERKE 27

// Instantiate (MINUIT) minimizer operating on this likelihood
RooMinimizer m(*nll) ;

// Minimize the likelihood (estimate parameter values)
m.migrad()

// Perform default error analysis (estimate parameter uncertainties using d2L/dp~2)
m.hesse() ;

The createNLL() method accepts both binned and unbinned datasets and returns a corresponding
likelihood. The returned likelihood function is a regular RooFit function object and can be plotted as
function of its variables (the p.d.f. parameters) in the usual way

RooPlot* frame = param.frame() ;
nll->plotOn(frame) ;

The createNLL() method accepts a number of optional arguments to modify the constructed likelihood.
These arguments are the same as can be passed to fitTo(). The most important ones are

ConditionalObservables(x) Specify that x should be treated as a conditional observable
NumCPU(n) Request that likelihood calculated is parallelized over 8 processors.

Verbose() Request that extra information is printed during minimization process

Automatic optimizations in the likelihood calculation

As likelihoods are computationally intensive, a number of automatic optimizations is applied in RooFit
likelihood objects when used in RooMinimizer minimizations

— Component p.d.f.s that have exclusively constant parameters, are precalculated

— Dataset variables that are not used by the p.d.f. are dropped

— P.d.f normalization integrals are only recalculated when the value of p.d.f parameters change (i.e.
not for every data point, unless the p.d.f. has a conditional observable)

— In simultaneous fits, on the part of the likelihood that depend on a changed parameter are recalcu-
lated

The applicability of all techniques is re-evaluated for each fit, ensuring maximal optimization potential
for each fit. In typical complex fits (e.g. the 35 parameters, 5 observable BaBar fit for the CP violation
parameter sin 20 a factor 3 to 10 speedup is not uncommon.

1.9.2 Understanding and using the MINUIT minimizer in RooFit

The default minimization and error analysis package used by RooFit is ROOT implementation of the
MINUITI5] package. The RooMinimizer interface class takes care propagating information from RooFit
variables and function from and to MINUITs internal representation, and interfaces its high level opera-
tions for minimization and error analysis. The most important of these are

MIGRAD Find function (likelihood or x?) minimum by alternatingly calculating the gradient w.r.t the
parameters and following that gradient to the (local) minimum. The number of likelihood evaluations
needed to do this depend strongly on the number of floating parameters, the shape of the likelihood
and the initial distance to the minimum.

HESSE Calculates the second derivative w.r.t. all parameters at the minimum and estimates a (symme—
tric) error for each parameter by assuming that the likelihood is locally parabolic (6(p)? = V(p) =

~1
(dQC};’%L) . Requires approximately Ngar /2 likelihood evaluations.



28 Les analyses discriminantes Multivariées

MINOS Calculate (potentially asymmetric) errors by finding a contour in likelihood defined by L =
Lynin + 0.5. The errors are then defined the (hyper)box that fits tightly around that likelihood
contour. The number of likelihood evaluations can be prohibitively expensive for a large number of
floating parameters (> 10 — 20)

CONTOUR Find and visualize contours of L = L,,;,, + X in two parameters. Mostly an interactive tool

1.9.3 Choosing the correct starting point for minimization

For all but the most trivial problems, there is no guarantee that MINUIT will find the correct (global)
minimum as its search strategy will stop at the first minimum that it finds in its search path through
parameter space. To increase your chances of proper convergence, it is important to provide reasonable
initial estimates for the parameters to be fitted. It may also be beneficial to supply reasonable initial
stepping sizes in the parameters so that MINUIT scan the likelihood (at least initially) at an appropriate
granularity. The default initial step size provide by RooFit to MINUIT is one tenth of the range of each
parameters. You can override this default by specifying an initial error on the fit parameters through
RooRealVar: :setError ().

1.9.4 Understanding difference between MINOS and HESSE errors

The MINOS and HESSE algorithms to estimate parameter errors are quite different, as explained above.
If the likelihood is (approximately) parabolic in shape close to the estimated minimum of the parameter,
both algorithms will report a similar error. If MINOS and HESSE error come out substantially different,
this implies the likelihood not asymptotically parabolic at the minimum and care should be taken in
the interpretation of the errors. It may be worthwhile to plot the likelihood explicitly as function of the
parameters, as shown earlier in this section, to understand the problem. Figure[1.12 shows a somewhat

pathological likelihood configuration that results in very different error estimates between HESSE and
MINOS.

| A RooPlot of "p" |

Fig. 1.12 - Example

el ! of a non-parabolic li-

é 0'95 kelihood that gives dif-

% 0.8F ferent estimates for the

307 error on p : The MI-

T F NOS estimate is defi-
0.6 . .

= ) ned by the intersection

0'55 % of the likelihood curves

0.4F : (solid) with A(L) = 0.5,

= the HESSE estimate is

0.25_ defined by the intersec-

= . 3 tion of the parabolic ap-

0'15_ ‘ S proximation around the

T R e minimum (dashed) with

p A(L) =05

1.9.5 Problems in the likelihood calculation

Sometimes, in the course of a minimization, the likelihood cannot be evaluated due to an error condition.
The two most probable causes for such errors are

— The probability density function evaluates to zero or a negative value for one or more data points,
resulting in an infinite or undefined likelihood contribution from that point.



[Wouter VERKERKE 29

— The normalization integral of a p.d.f evaluates to zero, or has numerical convergences problems.

If such errors occur during a minimization sessions, these errors are collected and summarized in a struc-
tured way for each likelihood evaluation for the user to analyze

[#0] WARNING:Minimization -- RooFitGlue: Minimized function has error status.
Returning maximum FCN so far (-2417.08) to force MIGRAD to back out of this region.
Parameter values: k=-36.7074, m0=5.2901
RooArgusBG: :argus[ m=m m0=m0 c=k p=0.5 ]
getLogVal() top-level p.d.f evaluates to zero or negative number @ m=m=5.2901, m0=m0=5.290,
c=k=-36.7074, p=0.5=0.5

At the same time, a very high value of the likelihood is returned to encourage MINUITS MIGRAD algo-
rithm to retreat from this region of parameters space. Note that it is not OK to simply drop problematic
events from the likelihood, as this can create false minima. This is illustrated in figure 1.13 showing an
ARGUS phase space background model being fitted with a floating end point parameter (left). Since the
ARGUS p.d.f has an discontinuity at the end point value, it is quite prone to likelihood evaluation error :
If the end point parameter is moved to too low values, one more events will be assigned a zero probability
by this p.d.f. and errors will occur.

The middle and right plots show the likelihood as function of the end point parameter in case proble-
matic events are dropped (middle) and in case a 'wall’ is put up (right).

Argus model and data -log(L) scan vs m0 [-og(L) scan vs mo, problematic regions masked |

50

14F 14f

40 12f 12f

Events / (0.0025 )

Projection of nll
Projection of nll

10F

10
30

20]

10}

1 1 1 1 1 1 1
g.Z 5.215.225.235.245.255.265.27 5.285.2

P ITI P TP
.3 5.%8328%2892895.25.29(52&29]5292295293 5.028828852892895.29 .2905. 2% 2915 2% 2925293
m m0 mo

Fia. 1.13 — Left : ARGUS probability density function overlaid on data. Middle : Likelihood as function
of end point parameter when events with zero probability are dropped. Right : Likelihood as function of
end point parameter with 'wall’ as presented by RooFit to MINUIT.

If such evaluation errors occur once or twice, MIGRAD may successfully recover from this, but if there
are many regions in parameter space that cause problem MIGRAD will terminate with failure. Most of
these problems can be fixed constraining parameter values to exclude problematic regions. For example, do
not allow Gaussian distributions to become arbitrarily small, as any point evaluated at 50 o will evaluate
to zero due to numerical precision. Also take care of degrees of freedom in polynomial-based p.d.f.s that
can easily go negative if left unchecked.

1.9.6 Mitigating fit stability problems

Sometimes fits do not converge properly, even if there are no evaluation errors in the likelihood. Often these
problems are caused by strong correlations between parameters, which make the minimization problem
difficult to solve numerically. The primary tool to investigate such correlation problems is correlation
matrix provided by HESSE.

To illustrate this problem and its solution we look at an example problem : Below we fit a sum of two
Gaussians to data. The widths of the two Gaussians have been chosen very similar.

w->factory("Gaussian::g1(x[-20,20] ,mean[-10,10],sigma_g1[3])") ;
w->factory("Gaussian::g2(x,mean,sigma_g2[3.1,2,61)") ;



30 Les analyses discriminantes Multivariées

w->factory("SUM: :model(frac[0,1]*gl,g2)") ;

RooDataSet* data = w::model.generate(w::x,1000) ;
RooFitResult* r = w::model.fitTo(*data,Save()) ;

Inspecting the returned fit result we see

RooFitResult: minimized FCN value: 2533.87, estimated distance to minimum: 0.000261785
covariance matrix quality: Full matrix, but forced positive-definite

Floating Parameter FinalValue +/- Error

frac 5.5907e-01 +/- 7.12e-01
mean 1.4846e-02 +/- 9.68e-02
sigma_gl 2.8392e+00 +/- 9.54e-01
sigma_g2 3.2973e+00 +/- 1.08e+00

A closer look at the correlation matrix, reveals the source of the problem :

ROOT> fitresult_model_modelData->correlationMatrix() .Print()

4x4 matrix is as follows

| 0 | 1 | 2 | 3 |
0| 1 -0.006309 0.9656 0.9664
11 -0.006309 1 0.02252 -0.03403
2 | 0.9656 0.02252 1 0.8746
3| 0.9664 -0.03403 0.8746 1

very strong correlations between the frac, sigma_g1 and sigma_g2 parameters. There are two strategies
to solves such problems : the first and simplest one is to fix of the parameters involved in the strong
correlations. This will eliminate the (almost) redundant degree of freedom and restore the stability of the
fit. An alternative strategy is to reparameterize the model so that it results in less correlated parameters,
for example by choosing sigma_g2 = ratio * sigma_gl

w->factory("Gaussian: :g2(x,mean,prod(ratio[1.05,0.5,2] ,sigma_g1))") ;

This second approach keeps the original degrees of freedom of the model, but is not guaranteed to reduce
the problematic correlations sufficiently for the fit to become stable. Some trial and error is usually needed.

Problematic correlations are particularly common between parameters of regular polynomials, and
regular polynomials should for that reason be avoided as models A good substitute are Chebychev po-
lynomials, in which terms have been rearranged to reduce correlations between coefficients. Chebychev
polynomials of the first type are implemented in class RooChebychev.

1.9.7 Profile likelihood and MINOS error estimation

We conclude this section with a short introduction on the concept of profile likelihood and its relation to
MINOS-type errors.

Given a likelihood L(a, 5) where a is our parameter of interest (e.g. our physics observable) and b are
other parameters (background and signal shape parameters etc, often called 'nuisance’ parameters), we
can define the profile likelihood as




[Wouter VERKERKE 31

where a refers to the estimated value of a. Thus the profile likelihood at a given value a is the likelihood
L(a, l_;) minimized w.r.t to all parameters b divided by the value of the likelihood in the global minimum.

Profile likelihood can be used to estimate uncertainties on physics parameters of interest in the pre-
sence of a large number of 'nuisance’ parameters, which are eliminated by the profiling technique. The
uncertainty on the parameter of interest is simply estimated from the interval in the profile likelihood,
where A(PL) = 0.5 (for a ‘one-sigma‘ equivalent error). The error estimated by the profile likelihood me-
thod is identical to that estimated by the MINOS method, but is computationally (much) more efficient
if there are many nuisance parameters.

The concept of profile likelihood errors and their relation to MINOS errors are best illustrated by a
2-parameter example. For such a 2-parameter given likelihood, it is instructive to start out with a plot
comparing profile likelihood versus the parameter of interest a versus the plain likelihood L(a,b). Starting
with the double-Gaussian example of the preceding section, but taking sigma_g2 and mean constant at 4
and 0 respectively, we make such a plot versus the remaining floating parameters frac and sigma_gi

// Create L(frac,sigma_gl), PL(frac) and PL(sigma_gl)
RooAbsReal* nll = w::model.createNLL(*data) ;
RooAbsReal* plll = nll->createProfile(w::frac) ;
RooAbsReal* pll2 = nll->createProfile(w::sigma_gl) ;

// Plot L(frac,sigma_gl) and PL(frac) vs frac
RooPlot* framel = w::frac.frame() ;
nll->plotOn(framel,LineStyle(kDashed) ,ShiftToZero()) ;
plli->plotOn(framel) ;

// Plot L(frac,sigma_gl) and PL(sigma_gl) vs sigma_gl
RooPlot* frame2 = w::sigma_gl.frame() ;
nll->plotOn(frame2,LineStyle(kDashed) ,ShiftToZero()) ;
pll2->plotOn(frame2) ;

// Plot contour at Deltal=0.5,2.0 in (frac,sigma_gl)
RooMinuit m(*nll) ;
RooPlot* frame3 = m.contour(w::frac,w::sigmal) ;

A RooPlot of "frac” A RooPlot [ ARooPlot of "sigma_g1" ]
= 2F o A4p = T
g F S F B
2 18 g 38F 218
] F E=J F T
< 16F @ 3.6F < 14
= F E =
S 14f 3.4F S14
5 1.F E 5
° 1.2F 3.2F 12
2 F E 9
5 IF 3F 5 1
L F F 2
<) o F <)
& OAB: 2.8: 5 0.8]
0.6F 2.6F B 0.6
E E , ] | T hesssslasmmsspafassamnns
0.4F 2.4F ' 0.4
- F 1]
0.2} 22F v 0.2
AT A | VRTINS PR T TP T OV PV obton o dy A T
GU 0.1 0.2 0.3 0.4 0. “ 01 02 03 04 05 0.6 0.7 0.8 0.9 22 24 26 28 3 32 34 36 38 4
frac frac sigma_g1l

Fi1G. 1.14 — Left : Profile likelihood (solid) and likelihood ratio (dashed) as function of frac. Right :
Profile likelihood (solid) and likelihood ratio (dashed) as function of sigma_gi. Middle : Contours in
delta-likelihood at 0.5 (solid) and 2(dashed). The box represent the MINOS errors.

The three plots that result from this code fragment are shown in Figure The profile likelihood
curves are always wider that the likelihood curve in the one-dimensional projections, because the profile
represents the minimum of the likelihood for each value of the plotted parameter of interest w.r.t. the
other nuisance parameters. In the best case, one was already at the minimum, in which case the likelihood



132 Les analyses discriminantes Multivariées

value and the profile likelihood value are identical, but one usually finds a lower minimum, resulting in a
wider valley. The profile likelihood curve is usually not parabolic, especially at more than 1-2 sigma away
from the minimum. This reinforces the point that parabolic (Gaussian) approximations are usually not
valid beyond 1-2 ’sigma’.

Figure [1.14] also shows the errors calculated by MINOS, defined by the box around the A(L) = 0.5
contour in the 2-d plane. These are also also indicated in the 1-D projections. The horizontal dashed line
at A(L) = 0.5 in both 1-d projection demonstrate that the MINOS errors are identical to errors that
would be obtained from an interval in the profile likelihood a A(L) = 0.5. This identity hold in general,
also in more than 2 dimensions, but the proof of the identity is not discussed here.

Références

[1] http://root.cern.ch

[2] W. Verkerke, D.Kirkby, , The RooFit Users Manual 2.91, available at [1]

[3] http ://root.cern.ch/drupal/content/roofit

[4] G. Punzi, Comments on likelihood fits with variable resolution, physics/0401045
|

[5] F. James, MINUIT Function Minimization and Error Analysis, Reference Manual, CERN Program
Library Long Writeup D506



